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ASYMPTOTIC BEHAVIOR OF AN INTEGRO-DIFFERENTIAL EQUATION

by

Jack K. Hale

Abstract: Consider the functional differential equation

-0

where a > O, g are continuous, a(l) = 0. If ? > 0 and

G(x) = g + as lxj , then it is known that every solution

either approaches a zero of g as t * or has an w-limit set

which is a 1-periodic solution of the equation K + a(O)g(x) = 0.

If there are only a finite number of equilibrium points and 1-periodic

orbits, then there is a maximal compact invariant set Aa.g in

C([-I,0]JR) which is uniformly asymptotically stable. When a is

convex, the topologically structure of A and the flow on Aa,g a,g

are discussed as a function of g. When g is fixed, xg(x) > 0,

x # 0, the complete bifurcation diagram is given for a in a neighbor-

hood of a linear function.
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1. Introduction. Consider the functional differential equation

(.1 (t) e a(O)g(xCt+O))de

where a > 0, g are continuous, a(l) = 0. If > > 0 and G(x) =

g -. as lxi then every solution approaches a zero of g

as t -. If a(s) is linear, then every solution either

approaches a zero of g as t or has an w-limit set which

is a 1-periodic solution of the euqation x + a(0)g(x) = 0 (see

Levin and Nohel [6] , Hale [ 3]).

With some other minor restrictions, there is a maximal compact

invariant set Aa,g of Equation (1.1) in the space C = C([-l,0],R)

which is uniformly asymptotically stable. The primary purpose of this

paper is to study the manner in which Aa,g and the flow on Aa,g

induced by Equation (1.1) depend upon the functions a,g. With the
kernel a fixed convex function, it appears that the flow on A

depends on more than just the zeros of the function g. For a

fixed function g, there are linear kernels a0 where the topological

structure of A can change for a in small neighborhood in

CC[O,IJIR) of a0 ; that is, a0  is a bifurcation point. These

bifurcation points are analyzed in detail and are shown to be

analogous to bifurcation form a focus. However, regardless of the

nature of g, the degeneracy at the focus is not of order one; that

is, it is not the usual generic I{opf bifurcation.

!I
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2. Definitions and background material. If C = C([-] ,01) .nnd

x is a continuous function on [ -l,o+c], a > 0, we let xt E C

be defined by xt(0) = x(t+O), -1 < 0 < 0, t E [o,o+a). If

g ck OcRA), k > 1, and a(s) > 0 is continuous on [0,1], let

x() be the solution of the functional differential equation

(2.1) i(t) = a(-0)g(x(t+0))d0

with x0(4() = €. If we assume that x(4)(t) for cvcry 4 E C is

defined for t > -1 and let Ta,g(00 = xt(fl, t > 0, then

T (t): C C, is a strongly continuous semigroup with T (t)0a,g a,g

having continuous derivatives with resp-ct to 0 up through order k.

Definition 2.1. For Equation (2.1) a set B in C attractsa set If

in C if, for any E > 0, there is a t0 = to (H,E) such that

T a,g(t)Hl is in an E-neighborhood of B for t > to. For

Equation (2.1), a set B in C attracts points if B attracts

the set {01 for every 4 E C. Equation (2.1) is point dissipative

if there is a bounded set B that attracts points. For Equation

(2.1), a set B attracts bounded sets if B attracts every

bounded subset H of C. A set B is stable if, for any neighbor-

hood U of B, there is a neighborhood V of B such that

T a,g(t)V c U for t > 0. A set B is asymptotically stable if it is

stable and attracts a neighborhood of B.

Definition 2.2. The positive orbit y+(O) through 4 is the set
(T a,g(t)O, t > 01. A function h: (--,0J -IR is said to be a

backward extension of 0 E C if h0 = € and Ta,g(t)ht =ht+
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for T E (--,0), 0 < t < -T. If h is a backward extension of 4,

we may define T a,g(t)4 for t < 0 as T a.(t)O = ht , t < 0. A negative

orbit Y () is the set {T (t)O, t < 01 defined by some back-a~g

ward extension of 0. A set B in C is invariant if for every

E B, we can define T (t)O for t < 0 and T (t)0 E B for
a,g a,g

t EIR. An equilibrium point of (2.1) is an invariant set consisting

of a single point 4. This always implies 0 is a constant

function.

A periodic orbit of (2.1) is an invariant set which is a closed

curve; that is, a periodic orbit is given by (Pt' t EIR} where

p(t) is a periodic solution of (2.1).

Let

(2.2) A = {4) E C: T a,g(t)O is defined and bounded for t < 01.

The following result gives some of the fundamental properties

of the semigroup T a.(t) and the set Aa,g and is essentially

contained in Hale [ 31, [ 4].

Theorem 2.3. If Equation (2.1) is point dissipative, then A

a,g

in (2.2) is the maximal compact invariant set of Equation (2.1) and

A is uniformly asymptotically stable. If, in addition,a,g

T a,g(t) is one-to-one on Aa,g, then T a,g(t) is a continuous

group on A a,g. Also, if T a.(t) takes bounded sets into bounded

sets, then Aa,g attracts bounded sets of C.

In the following discussion, A x -W is a topological space

k
which is also a subset of C([0,lJR) x C ORJ1R), k > 1, with
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(an n + (a,g) E -rx implying that a + a uniformly onn n n

[0,1] and drgn/dxr + drg/dxr, 0 < r < k, uniformly on compact sets.

Definition 2.4. -Pe x Y is uniformly point dissipative if there
is a bounded set B c C such that B attracts points of T (t)

a,g

for every (a,g) E jQ9x

The following result is due to Cooperman { 1 ] (see, also,

Hale [ 4]).

Theorem 2.5. If -W x - is uniformly point dissipative, then Aag

is upper semicontinuous in (a,g); that is, for any neighborhood U

of Aa,g , there is a neighborhood V of (a,g) in -.W x -W such

that Abh c U for (b,h) E V.

Definition 2.6. For (a,g), (b,h) E x , we say (a,g) is

equivalent to (bh), (a,g) - (b,h), if there is a homeomorphism

ag Ab  such that TT (t) Tbh (t)T on A . An

(a,g) E -Q x Y is structurally stable in -Wx if there is

a neighborhood V of (a,g) in .Wx such that (a,g) - (b,h)

for every (b,h) E V.

Definition 2.7. An equilibrium point a of (2.1) is hyperbolic if

the solutions of the characteristic equation

(2.3) ) + g'Ca) 1 0a(O)ex0 do = 0

have negative real parts. A periodic orbit [pt, t E IR) is

hyperbolic if the linear variational equation
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(2.4) (t) + a(-e)g'(p(t+O))y(t+e)dO = 0

has one as a simple characteristic multiplier and no other character-

istic multiplier on the unit circle.

If p has period T, a point P = exp AT is a characteristic

multiplier of (2.4) if there is a solution of (2.4) of the form
Atq

e q(t) where q is T-periodic and not identically zero (see

Hale [ 3]).

If a satisfies

0
(2.5) a(-6)dO > 0

-1

then an equilibrium point c is hyperbolic if and only if g'(a) f 0,

asymptotically stable if g,(a) < 0 and unstable if g,(a) > 0.

Therefore, the set of all g for which the equilibrium points are

hyperbolic is a residual set in Cr IRR) for each fixed a satis-

fying (2.5).

We will see below that there are functions a for which there

is no residual set of g for which the periodic orbits are hyperbolic.
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3. Convex kernel. In this section, we suppose that a E C 2[-1,0],

(3.1) a(l) = 0, a(s) > 0, A(s) < 0, (s) > 0, s E [0,1],

(3.2) G(x) = Jg -) as lxi -.0

The following result may be found in Hale [3, p. 122].

Theorem 3.1. If the conditions (3.1), (3.2) are satisfied and the

zeros of g are isolated, then every solution of (2.1) is bounded,

and

(i) If there is an s such that .(s) > 0, then the w-limit

set of any orbit of (2.1) is an equilibrium point of (2.1); that is,

a constant function whose value is a zero of g. An equilibrium

point c is hyperbolic if and only if g,(a) 0, asymptotically

stable if g'(ot) > 0 and an unstable saddle point, if g,(a) < 0.

(ii) If a(s) = 0 (that is, a is linear) then, for any 0 E C,

there is either an equilibrium point or a one-periodic solution

p = pCO) of the ordinary differential equation

+ a(O)g(y) = 0

such that the w-limit set of the orbit through is Pt t E IR}.

For any zero a of g, let

W S(a) = {O E C: Ta,g (t) the constant function a as t o}.

LA
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We may now make the following conjecture

Conjecture 3.2. If (3.1), (3.2) are satisfied and, in addition,

the zeros aj, j = 1,2,..., of g are simple and there is 6 > 0

such that

(3.3) a(s) > 0 for s E (1-6,1)

then the set

W = {Ws (a.): a is asymptotically stable)

is dense in C.

One could try to prove this using an idea of Henry [ 5 ]. Let

a be a saddle point and for any r > 0, 1 > 0, let W s (a) =

{O E C: T (T) E W5 S(a), IT () ) - a < r}. The set Ws(a) is
a.g a.9g

closed. If it contains a ball B = {l+ph: Ihi = 1, 0 < p < ro},

then Tag (T)B has been flattened so that it is contained in a

submanifold of codimension one. In particular, aTa.g(t)(0l+Ph)/Dp

at p = 0 is in the tangent space of WS(a). This function

D Ta  (t)h is the solution of the linear variational equation1 'g

0

t= - a(-O)g'(Tag(t)4)l)Y(t)

with yo = h. If the solution operator of the adjoint of this

equation is one-to-one, then the assertion that W r (a) contains

a ball is false. In fact, take a vector n 0 such that <n,O> = 0

for all 0 in the tangent space to Ws (a) at Ta,g(( ) O1 .

Integrating the adjoint equation for a function zt on [0,11

with z= n, one obtains, for all h,



(z 0 ,h) = (zTh) = (n,D T a , g (T)h) = 0.

Thus, z0 = 0. Since the solution operator for the adjoint equation

is one-to-one, it follows that n = 0. Consequently, the set

WrS (a) contains no ball, which implies that W, is closed andt'r T , r

nowhere dense. Thus IVs (a) has no interior. This will prove the

conjecture.

To show the solution operator for the adjoint equation is one-

to-one, it is sufficient to show that the solution operator of the

linear variational equation is one-to-one and the functions which

have backward extensions are dense in C.

If the zeros g are isolated and there is an s in [0,1]

such that *(s) > 0, then Theorem 3.1 implies every solution of

(2.1) approaches an equilibrium point of g. If we assume, in

addition, that there are only a finite number of zeros of g, then

the method of proof of Theorem 3.1 in Hale [ 31 shows that A is

compact and attracts bounded sets of C. Also,
k

Aa,g = Uj 1 Wu )

where a. is a zero of g and WU(a.) is the unstable manifold

of a. The unstable manifold of any zero has dimension < 1 as

is easily seen from Equation (2.5). Thus, Aa,g is the union of a

finite number of manifolds of dimension < 1. If each a. is3

hyperbolic and the w-limit set of each unstable manifold WU(a.)

of an unstable equilibrium point is a stable equilibrium point,

then Aa,g has the one-dimensional structure shown in Figure 1.



Figure 1

Suppose x' x is a uniformly bounded dissipative set containing

(a,g). To see how to construct such a set, consult the proof of

Theorem 3.1 in Hale [ 3]. We can show that (a,g) is structurally

stable in -W x Y9. In fact, Theorem 2.5 implies Ab,h ig upper

semicontinuous at (a,g). Also, there is a neighborhood U of

A a,g such that the flow is given as in Figure 2.

Figure 2.

This neighborhood U can be chosen to be invariant for all (b,h) E V.
Thus the new Ab, h, (b,h) E V must have the same structure as Aa.

We state this as
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Theorem 3.3. Suppose there is an s in (0,1) such that a(s) > 0

and there are only a finite number of equilibrium points of (2.1),

each of which is hyperbolic. If the w-limit set of an unstable

manifold is a stable equilibrium and W x Y is a uniformly bounded

dissipative set containing (a,g), then (a,g) is structurally

stable in SIX f9.

One can now ask the following interesting question.

Question 3.4. Suppose conditions (3.1), (3.2) are satisfied and

a is a fixed function satisfying a(s) > 0 for s E (0,1). Let

Wk = {g which have exactly 2k+l zeros which are all simple).

4How many different equivalence classes are in Wk?

If k = 0, that is, g has only one zero a, then A a,g a,

the constant function a and all g E "- are equivalent.
0

If k = 1, then g E X has three simple zeros, a < a2 < a 3

with a1 ,a3  asymptotically stable and a 2 a saddle point. Since

the unstable manifold at a 2 is smooth, one dimensional and Aa.9

is uniformly asymptotically stable, it follows that A a, is a one

dimensional manifold with boundary points al,a Again, all ele-

ments of are equivalent.

The topological structure of A is not understood for the
a.g

case when g has given zeros a1 < a2 < a3 < a4 < a5 ' If we consider

g depending on some parameters V with g(x,U) = x5 at P = 0,

then A (I) is {0} for p = 0. There is a center marifold in

a neighborhood of x = 0 which is one dimensional and smooth in p.
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As Ivi varies near U 0, g(x,P) can have as many as 5 zeros
which must lie on this center manifold. Thus, A (u) is either

a,g

a point or a one-dimensional manifold with boundary for P small.

As p increases, it is conceivable that the topological structure

of Aa. changes. Let us give some intuitive reasons for why this

is possible. The author wishes to acknowledge conversations with,

John Mallet-Paret which were of great assitance in the remaining

disutssion of this section.

Suppose g has five zeros and the general shape shown in

Figure 3. If a is strictly convex and very

n Y 6

Figure 4.

xj Y

Figure 3. Figure S.

close to the 6-function at zero, then Aag is shown in Figure 4.

The complete flow near A is shown in Figure 5 with thea,g

exponential decay toward A being very rapid and much greater
a,g

than the convergence of the flow on Aa,g toward 8.

If g'($) = a, then the flow near B is determined by the

roots of the characteristic equation
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(3.4) X = -a a(-0)e 0d0.

One can show there is an aO and a strictly convex function a0

with the property that the roots of this equation with maximum real

part corresponds to a double root root. Furthermore, in any neighbor-

hood of ( 0 ,ao) there is an a and a strictly convex function a

such that Equation (3.4) has a pair of complex conjugate roots

0,J0 with maximum real parts. For this a and the corresponding
00

4 g and from the fact that the flow near Aa,g is shown in Figure S

with the stable manifolds transversal to A of codimension one,a,g

the flow near A is governed by what happens on a two-dimensionala,g

manifold M determined by the invariant manifolds corresponding
a,g

to the roots A0, 0. This manifold is constructed by finding a local

invariant manifold near B which is tangent to the invariant sub-

space of the linear approximation near a generated by the eigen-

values A0 ,0 Then find M by backward extension along the0'0 a ,g

flow. On M the flow is shown in Figure 6.a,g

y 6 6

Figure 6. Figure 7.
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If it is possible to show that one can break the connection

between Y,6 by a small variation in a, then the new picture will

be as in Figure 7. This is the point that the author has been

unable to verify.

Assuming that the previous step can be done, we have changed

the orientation of the points on Aa,g; namely from Figure 8a)

to Figure 8b). Thus, they are in different equivalence classes.

n y 6 n y 6

Figure 8a) -Figure 8b)

A small change in g to make the double zero either disappear

or give two simple ones gives the distinct structurally stable systems

shown in Figure 9. We draw the spirals as arcs since they are the

n Y 1  62 6 n

6I

Figure 9a) Figure 9b) Figure 9c)
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same under homeomorphism.

Now let us vary g some more to attempt to go from the

structurally stable system in Figure 9c) to the one in Figure 9b)

and keep the zeros of g simple. The only possible way to do this

is to have a saddle connection; namely, have a function g for

which the saddle 62 is connected to Y with the configuration

shown in Figure 10.

61 62

Figure 10.

Conjecture 3.5. There is a saddle connection for some (a,g)

with a strictly convex and g having five simple zeros. The set

of (a,g) for which this is true is not generic.

Theorem 3.1 can be generalized to an n-vector system of the

form

to
(3.5) k(t) -a(-O)grad G(x(t+O))dO

where x , I n , G: Rn -IR. The proof will be the same as in Hale (3].

A proof or counterexample to the following conjecture would be

interesting:
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Conjecture 3.6. If a(l) 0, i(s) > 0 for 0 < s < 1, then the

set of G for which Equation (3.5) is structurally stable is

residual in the set of C2 functions from IRn to IR with the

Whitney topology.

Let us now consider in more detail the case when the kernel

in Equation (2.1) is a linear function. Consider the equation

(0
(3.6) ic(t) = -P a0 (-O)g(x(t+0))dO, a0 (s) = (l-s), 11 > 0

~-1

and assume that the zeros of g are isolated. From part (ii) of

Theorem 3.1, we know that the w-limit set of every solution of (3.6)

is either an equilibrium point of a periodic orbit generated by a

1-periodic solution of the ordinary differential equation

C3. 7) + g(y) =0.

As we shall see below, the structure of A can be very
a,g

complicated and is not very well understood. However, the following

interesting fact is true.

Proposition 3.6. For Equation (3.6), no periodic orbit can be

uniformly asymptotically stable relative to perturbations in

A pa ,. If A a0, contains a periodic orbit, then (via 0,g)

cannot be structurally stable.

Proof: Suppose A)a0,g contains a periodic orbit y which is
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uniformly asymptotically stable. Then, for any neighborhood U of

Y there is a neighborhood V of Y and a neighborhood W of

Ua 0  in the C0 -topology such that, for any a E W, 0 E V, the

positive orbit Y+(O) of (2.1) belongs to U. In particular, one

can choose the neighborhood U of Y and W of Pa so that U

contiins no equilibrium point of (2.1) for any a E W.

In the neighborhood W of Pa 0  there exists a strictly

convex function a. Thus, A contains no periodic orbits and
a,g

every solution of (2.1) approaches an equilibrium point. This

contradicts the fact that some positive orbits remain in U. This

proves no periodic orbit can be uniformly asymptotically stable.

The fact that (aog) cannot be structurally stable if Aag

contains a periodic orbit follows by choosing a strictly convex

function near PaO. This proves the proposition.

To understand more about the possible topological structures

for Aa 0,g, we consider some special cases. Suppose

yg(y) > 0, y 0, g'(O) = 1.

If p(t,G) is the solution of the equation

+ g(y) = 0

with p(O,b) = b > 0, (0,b) 0, then p(t,b) has period

w(b) o 2n as b - 0. We assume that w(b) is a strictly monotone

function of G for b > 0.

The solutions of (3.7) are then given by p(v 2tb) and have

period w(b)/1
1 2
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The linear variational equation around x = 0 is

r0

(3.8) iCt) -I (1+0)x(t+O)d6

for which the characteristic equation is

0

(3.9) (1+0)e

.- 1

or

(3.10) + i(X-Il+e-)) -Z = 0.

Equation (3.7) is a special case of Equation (2.1) and so Theorem 3.1

may be applied. Thus, we see that every solution of (3.7) approaches

zero as t . if

(3.11) / 47 2k2, k = 1,2,3,...

This implies the roots of Equation (3.9) have negative real parts

if V satisfies (3.10).Consequently, the solution x = 0 of

Equation (3.6) is uniformly asymptotically stable if satisfies

Relation (3.10).

For P = 42 k 2 , Equation (3.9) has the purely imaginary solutions

±X, A = 2lTki with all other solutions having negative real

parts. Also, the solution X(V) with x(4r 2 k2 ) = 2nki satisfies
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= A i 2 4f2k 2

1 at p= 4f2k

di 244k a

Thus, Re A behaves as a quadratic function and Im A as a linear

2 2
function in a neighborhood of P = 4n2 k

We can begin to use this information to analyze the set A ao9g

for Equation (3.6), If 0 < P < 4w2, there are no 1-periodic solutions

of Equation (3.7) and every solution approaches zero as t .

Thus, la - t0. If 4n2 < P < 16n 2 , there is exactly one

1-periodic orbit Y in A~ag generated by the 1-periodic solution

of Equation (3.7). Also, {0} c Aua 0 ,g and the solution x = 0 is uni-

formly asymptotically stable by the previous analysis of Equation (3.7).

For P very close to zero, there is a two dimensional center manifold

MIwhich contains A ,g Since A is uniformly asymptotically

stable, it follows that A a0,g is the two manifold consisting of the

orbit y' and its interior relative to MI. The flow on A is
V' 11 ua 0 g

given as in Figure 11. The orbit y. in the center manifold

Y1

Figure 11. Figure 12.
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Mv. is asymptotically stable from the outside and unstable from

the inside. The orbit Y. has an --dimensional stable manifold which

is transversal to M. so that locally the flow is similar to the one

shown in Figure 12. Everything inside the "cylinder" through Y!

consisting of the stable manifold transverse to M' approaches zero
1'

and everything outside approaches Yu" If we vary 4 in the interval

2 6w2
472 < P < 16n2, the same picture will prevail since 0 and Y' must

be the attractor for all orbits. Thus, A is a "disk" for1 a0 ,g

4f2 < P < 16n2 and is given by A g = 0} U W(Y).

At P = 16n 2 there is a solution of (3.9) on the imaginary axis

2 2
given by X = 4ni and for 16wf < p < 367 , there is a unique

periodic orbit Y of (3.6) of period 1/2 (and therefore of period 1)
2

generated by the (1/2-periodic solution of (3.7). For 162 <g <

367 2, the origin is uniformly asymptotically stable from the above

analysis of Equation (3.8). Again, there is a two-dimensional center

manifold through x = 0 which is transversal to

{0} U wu(67 and asymptotically stable. The orbit Y 2

16wr
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must be on M 2. Reasoning as before, we have for P > 16T 2  but

close to 16w 2 that Aa 0 ,g n M2 -{- u Wu(Y) Since Wuy 2 is

transversal to Wu(Y'), the set A is two-dimensional and is~a0 ,g

the union of a finite number of manifolds. Locally near 0, the

set A is like two disks in 4-dimensional space intersectinglaa0 , g

at zero.

As V passes through 36n 2 , another priodic orbit of period

1/3 appears and something similar happens, but the geometry becomes

more complicated.

"I. . . .. .i . . . . . .. . .. . . .... . . .. .... ... .. l l ... . . II. . ....
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If the function g in (3.6) has three simple zeros, say

a < 0 < Y, then 0 must always be an unstable saddle point with

Wu(8) one-dimensional. The equilibrium points a,y will be uni-

2 2
formly asymptotically stable as long as Pg,(a) 47T k

iPi'(0) # 41 2 k 2 for all k = 1,2,.... The phase portrait for the

second order equation (3.7) is shown in Figure 13. If there is no

.@ Figure 14a)

Figure 13

Figure 14b)

periodic orbit of period 1, then A,,g is a one-dimensional mani-

fold with boundary points being the constant functions a,Y.

Suppose now that there is no periodic solution of period 1 whose

orbit encircles all three equilibrium points and only one encircling

each of the points (a,O),(Y,O). Arguing as for the previous case,

one sees that A has the structure shown in Figure 14a) witha0 ,g

the flow on A ag shown if Figure 14b). Each of the periodic

orbits is unstable from the inside on Avag. Suppose now that
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there is no 1-periodic orbit of (3.7) encircling one equilibrium

point and exactly one 1-periodic orbit y encircling all three

equilibriums. We do not know the structure of A a0,g but con-

jecture that it is a two-dimensional manifold with boundary Y,

the equilibrium points a,y are asymptotically stable and 0,Y

are unstable on A a0,g.

By choosing different functions g, one can certainly make the

set A have a large number of periodic orbits and equilibrium

points. The way these periodic orbits and equilibrium points fit

together in the flow on Aua0g is not known. However, from

Proposition 3.5, we know that no periodic orbit in Aa0f can be

uniformly asymptotically stable.

Fron the above analysis, we see that Equation (2.1) with a(s)

strictly convex has a very nice structure which appears to be

structurally stable for a residual set of functions g. Also, one can

show that (a,g) structurally stable for a  strictly convex will

imply that (a,g) is structurally stable if g is close to g and

a is close to a; that is, the kernel also can be cahnged slightly.

If aO(s) is linear, it is probably true that (ao,g) is

structurally stable for a residual set of g. However, (a0 ,g0 )

structurally stable subject to variations in g does not imply that

(a,g) will be structurally stable if one changes a0 slightly to a

new function a (Proposition 3.5). In fact, the structure of Aa,g

can be drastically different for a strictly convex function a which

is close to a0 in the C2-topology, In fact, all periodic orbits

in Ava0 ,g will disappear. Thus, it becomes interesting to analyze

the behavior of the solutions of (2.1) for an arbitrary function a
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close to the linear function Iwa( in the C 2 _topology. This is

the topic disuccsed in the next section.
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4. Bifurcation near linear kernels. In this section, we consider

equation (2.1) with

xg(x) > 0 for x 0, g'(0) = 1,
(4.1) r

G(x) = Jg - as lxi

where g is continuous together with all derivative up through

order five and a is in a C 0-neighborhood of 4T 2a 0 , a0 (s) = 1 s.

We also suppose the period w(b) of the solution through (b,0),

b > 0, of the equation

(4.2) + g(x) = 0

satisfies

(4.3) W'(b) / 0.

Under an additional conditional on g which will be specified

later, we determine the behavior of the solutions of (2.1) in a

neighborhood of x = 0 for all a in a neighborhood of the bi-
2

furcation point 4n a0. The analysis is based on the application

of the method of Liapunov-Schmidt for periodic orbits near x = 0

together with properties of the bifurcation function from

deOliveira and Hale [ 2].

We need the following lemma.

Lemma 4.1. There is a neighborhood U of 41T2 a0  in the C 0-topology,

a 6 > 0 and an analytic function X* U C such that X*(4f a0)= 2ni
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and, for every a E U, the equation

(4.4) X + a(O)e XdO = 0

has exactly one solution in each of the circles IX _ 21Til < 6

given respectively by X*(a),T*(a) and all other solutions with real

parts < -6. Furthermore, if

r- = fa E U: Re A*(a) < 0}

40

r0 = (a E U: Re X*(a) = 0}

r1 = {a E U: Re X*(a) > 0}

then each of these sets is nonempty and 0  is a submanifold of

codimension one.

Proof. If

F(X,a) =X a(O) X O

then F(2ni,41T2a0 ) = 0 ahd Df/X = 1 - 2 at (2ni,4 2a). The

Implicit Functbn Theorem implies the existence of a function

A*Ca) E Q analytic in a neighborhood of a0 with X*(a 0 ) = 2ri.

The other properties of X* follow essentially from Rouche's Theorem.

To show r has codimension one, consider the family of

functions 4n2 (a0+vbo), bo(s) = s(l-s), v EJR. Then the derivative

of X*(4 2(a0+vb0 ) with respect to v at v = 0 is easily seen

to satisfy
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-4rr 2  O(l+O)e2 T1O dO

'V=0 -1

Thus,

aeX* 0O

Re X 4n - 2 j O(1-0)cos 2lTOdO > 0.

0 +
This shows that r has codimension one and also that P ,j arc

not empty. This proves the lemma.

Remark 4.2. We knew from the previous section that Re X*(a) < 0

if a E U is strictly convex. The above proof shows that

Re X*(a) > 0 if a E U is of the form a = 42 a0 + b where b

is strictly concave, b(O) = b(l) = 0.

2
For a = 47 a0 , the characteristic equation for the linear

variational equation around zero has two purely imaginary roots.

2
For a near 4n ao, and a neighborhood W of zero let B(r,a,g)

be the scalar bifurcation function obtained by applying the usual

method of Liapunov-Schmidt for the periodic solutions of (2.1) in

W which for a = 4i2a0  are equal to r cos 2lft (see, for

example, dcOliveira and Hale [ 2]). This function has the property

that the periodic solutions of the type specified are in one to one

correspondence with the nonnegative zeros of B(r,a,g). Further-

more, the stability properties of the periodic solution correspond-

ing to a zero r0  of B(r,a,g) when restricted to a center

manifold at x = 0 are the same as the stability properties of the

equilibrium point r0 of the scalar equation
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(4.5) = B(r,a,g)

(see deOliveira and Hale [2]). The function B(r,a,g) is an odd

function of r and has five continuous derivatives. Let

(4.6) B(r,a,g) = alc(a,g)r + a3(a,g)r3 + as(a,g)r + o(IrI )

as r 0.

If X *(a) is the function given in Lemma 4.1, the manner in

which the bifurcation function is constructed implies that

a 1 a,g) = 0 if and only if Re X*(a) = 0

(4.7)
sign a (a,g) = sign Re X (a)

2Thus, a1(4r aog) = 0.

Let a0 = a3 (4n2 a0,g). We now show that 0 0 0. Since the

2
solution x = 0 of Equation (2.1) for a = 4n2 0 is asymptotically

2
stable, it follows that the zero solution of (4.5) for a = 471 a0

0 0
is asymptotically stable. Thus, a3 < 0. If a3 < 0, then the

function B(r,a,g) for a varying in a small neighborhood of 4f2a 0

can have only three possible shapes in a neighborhood of r = 0 as

shown in Figure 15.

Now consider the special function a = i a0  for u varying in

small neighbhood of 4f2 , 11-4121 < e. If 11 4 r2 , we know that

Re X*(Pa 0 ) < 0 from the previous section. Thus, al(tia 0 ,g) < 0

if i f 47r . For definiteness, suppose w'(b) < 0 in (4.3). Then,
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Figure 15.

the analysis in the previous section implies there is an e > 0 and

a sufficiently small neighborhood W of x = 0 such that there is

no periodic orbit of (2.1) in W for 0 < v - 4r2 < E and a unique

periodic solution Y in W for -E < - 4T2 < 0, Y+ 0 as

P 4- 2 and Y is unstable in A Thus on a center manifold,
a,g

Y is stable from the outside and unstable from the inside. This

means the same is true for the corresponding equilibrium point r of

Equation 4.5. Consequently, the bifurcation function must have the

shape shown in Figure 16. This is impossible if a0 < 0. Thus,

(ri, ,0)

-(~0)

Figure 16.
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0• . Thus, a = 0.

Again, the stability of the zero solution of Equation (2.1) for

a = 4 2a0  implies that as(4r2 ao,g) < 0. We make the hypothesis

that

(4.8) 0(g) def a 2(4rr2a

5(g = 5(4 a0 g) < 0.

This implies that

(4.9) B(r,47 2aog) 0 S(g)r5 + o(r 5  a < 0.

We have not made the computations (which would be extremely complicated)

0to obtain the constant a5 (g). However, it certainly seems plausible

0that the set of g for which aS(g) < 0 is open in the spacc

C5 (U,)R) for a given bounded neighborhood U of x = 0.

If B(r,a,g) = rP(r ,a,g), then

(4.10) P(P,a,g) = a1 (a,g) + a3 (a,g)P + as(a,g)p2 + o(P )

as p - 0. This function has a unique maximum n(a,g) in a

neighborhood U of a = 4W2a which occurs at a value p*(a,g) and

n(472 aog) = 0. If
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SN0 = {a E U: n(a,g) = 0, P*(a,g) > 01

(4.11)

SN + (.- = {a E U: n(a,g) > (<)0, P*(a,g) > 0).

One can show that every tangent vector to SN0  is a tangent vector

0to r We suppose that

(4.12) SN0  is a submanifold of codimension 1, S+ i .

It is possible to show that hypothesis (4.12) is satisfied for

an open set of g E C S(WJR) for a bounded neighborhood W of zero.

We can now prove the following result.

Theorem 5.3. With hypotheses (4.1), (4.3), (4.8) and (4.12), there

is a neighborhood U of 4n2a0 in the C0 -topology and a neighbor-

hood W of x = 0 such that U is subdivided into regions as

shown in Figure 17, the set Aa,g is a disk for each a E U with

boundary being a periodic orbit and the flow on a two dimensional

manifold in Aa,g is shown in Figure 17.

a4Cg

SN0  0

II SN0

11 r +

r ir 0r +

Figure 17.
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Proof. If a E F , then cl(a,g) > 0,ca3 (a,g) < 0 implies that

P(p,ag) in (4.10) has a unique positive zero. Thus, there is a

unique periodic solution in a small neighborhood of zero and it is

asymptotically stable as shown in the flow for F+ . This shows that

SN c F . By hypothesis (4.12) and the fact that the stability

properties of the priodic orbits are determined by (4.5), we have that

the flow on SN0 is the one shown in Figure 17. Also, the flow in the

other two regions must be one of those shown in Figure 17. We only

need to verify that the regions are ordered as shown. In the proof of

Lemma 4.1 we showed that the curve 4n2(a 0 +vb0 ), b0 (s) = s(1-s) was

transversal to F0 at v = 0. For v < 0 this function is in F-

and stictly convex. Thus, the origin is uniformly asymptotically

stable. This proves that the flow in Region II in Figure 17 is the

one that is depicted. This proves the theorem.
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